3,707 research outputs found

    Discrete Self-Similarity in Type-II Strong Explosions

    Get PDF
    We present new solutions to the strong explosion problem in a non-power law density profile. The unperturbed self-similar solutions discovered by Waxman & Shvarts describe strong Newtonian shocks propagating into a cold gas with a density profile falling off as rāˆ’Ļ‰r^{-\omega}, where Ļ‰>3\omega>3 (Type-II solutions). The perturbations we consider are spherically symmetric and log-periodic with respect to the radius. While the unperturbed solutions are continuously self-similar, the log-periodicity of the density perturbations leads to a discrete self-similarity of the perturbations, i.e. the solution repeats itself up to a scaling at discrete time intervals. We discuss these solutions and verify them against numerical integrations of the time dependent hydrodynamic equations. Finally we show that this method can be generalized to treat any small, spherically symmetric density perturbation by employing Fourier decomposition

    Opportunistic linked data querying through approximate membership metadata

    Get PDF
    Between URI dereferencing and the SPARQL protocol lies a largely unexplored axis of possible interfaces to Linked Data, each with its own combination of trade-offs. One of these interfaces is Triple Pattern Fragments, which allows clients to execute SPARQL queries against low-cost servers, at the cost of higher bandwidth. Increasing a client's efficiency means lowering the number of requests, which can among others be achieved through additional metadata in responses. We noted that typical SPARQL query evaluations against Triple Pattern Fragments require a significant portion of membership subqueries, which check the presence of a specific triple, rather than a variable pattern. This paper studies the impact of providing approximate membership functions, i.e., Bloom filters and Golomb-coded sets, as extra metadata. In addition to reducing HTTP requests, such functions allow to achieve full result recall earlier when temporarily allowing lower precision. Half of the tested queries from a WatDiv benchmark test set could be executed with up to a third fewer HTTP requests with only marginally higher server cost. Query times, however, did not improve, likely due to slower metadata generation and transfer. This indicates that approximate membership functions can partly improve the client-side query process with minimal impact on the server and its interface

    Feedforward Inhibition Underlies the Propagation of Cholinergically Induced Gamma Oscillations from Hippocampal CA3 to CA1.

    Get PDF
    Gamma frequency (30-80 Hz) oscillations are implicated in memory processing. Such rhythmic activity can be generated intrinsically in the CA3 region of the hippocampus from where it can propagate to the CA1 area. To uncover the synaptic mechanisms underlying the intrahippocampal spread of gamma oscillations, we recorded local field potentials, as well as action potentials and synaptic currents in anatomically identified CA1 and CA3 neurons during carbachol-induced gamma oscillations in mouse hippocampal slices. The firing of the vast majority of CA1 neurons and all CA3 neurons was phase-coupled to the oscillations recorded in the stratum pyramidale of the CA1 region. The predominant synaptic input to CA1 interneurons was excitatory, and their discharge followed the firing of CA3 pyramidal cells at a latency indicative of monosynaptic connections. Correlation analysis of the input-output characteristics of the neurons and local pharmacological block of inhibition both agree with a model in which glutamatergic CA3 input controls the firing of CA1 interneurons, with local pyramidal cell activity having a minimal role. The firing of phase-coupled CA1 pyramidal cells was controlled principally by their inhibitory inputs, which dominated over excitation. Our results indicate that the synchronous firing of CA3 pyramidal cells rhythmically recruits CA1 interneurons and that this feedforward inhibition generates the oscillatory activity in CA1. These findings identify distinct synaptic mechanisms underlying the generation of gamma frequency oscillations in neighboring hippocampal subregions

    The Structure of Globular Clusters

    Get PDF
    We report the preliminary results of a CCD surface photometry survey of a large fraction of all known Galactic globular clusters. About 1/5 of all surveyed clusters show a characteristic post-core-collapse (PCC) morphology. The PCC clusters are on average closer to the Galactic center than the King-modelā€“like clusters

    Reflectance of Polytetrafluoroethylene (PTFE) for Xenon Scintillation Light

    Full text link
    Gaseous and liquid xenon particle detectors are being used in a number of applications including dark matter search and neutrino-less double beta decay experiments. Polytetrafluoroethylene (PTFE) is often used in these detectors both as electrical insulator and as a light reflector to improve the efficiency of detection of scintillation photons. However, xenon emits in the vacuum ultraviolet wavelength region (175 nm) where the reflecting properties of PTFE are not sufficiently known. In this work we report on measurements of PTFE reflectance, including its angular distribution, for the xenon scintillation light. Various samples of PTFE, manufactured by different processes (extruded, expanded, skived and pressed) have been studied. The data were interpreted with a physical model comprising both specular and diffuse reflections. The reflectance obtained for these samples ranges from about 47% to 66% for VUV light. Fluoropolymers, namely ETFE, FEP and PFA were also measured

    Universality and Clustering in 1+1 Dimensional Superstring-Bit Models

    Full text link
    We construct a 1+1 dimensional superstring-bit model for D=3 Type IIB superstring. This low dimension model escapes the problems encountered in higher dimension models: (1) It possesses full Galilean supersymmetry; (2) For noninteracting polymers of bits, the exactly soluble linear superpotential describing bit interactions is in a large universality class of superpotentials which includes ones bounded at spatial infinity; (3) The latter are used to construct a superstring-bit model with the clustering properties needed to define an SS-matrix for closed polymers of superstring-bits.Comment: 11 pages, Latex documen

    A Lagrangian dispersion model for predicting CO\u3csub\u3e2\u3c/sub\u3e sources, sinks, and fluxes in a uniform loblolly pine (\u3ci\u3ePinus taeda\u3c/i\u3e L.) stand

    Get PDF
    A canopy Lagrangian turbulent scalar transport model for predicting scalar fluxes, sources, and sinks within a forested canopy was tested using CO2 concentration and flux measurements. The model formulation is based on the localized near-field theory (LNF) proposed by Raupach [1989a, b]. Using the measured mean CO2 concentration profile, the vertical velocity variance profile, and the Lagrangian integral timescale profile within and above a forested canopy, the proposed model predicted the CO2 flux and source (or sink) profiles. The model testing was carried out using eddy correlation measurements at 9 m in a uniform 13 m tall Pinus taeda L . (loblolly pine) stand at the Blackwood division of the Duke Forest near Durham, North Carolina. The tree heightand spacing are relatively uniform throughout. The measured vertical profile leaf area index (LAI) was characterized by three peaks, with a maximum LAI occurring at 6.5 m, in qualitative agreement with the LNF source-sink predicted profile. The LNF CO2 flux predictions were in better agreement with eddy correlation measurements (coefficient of determinatior r2=0.58; and standard error of estimate equal to 0.16m kg-1 m s-1) than K theory. The model reproduced the mean diurnal CO2 flux, suggesting better performance over longer averaging time periods. Two key simplifications to the LNF formulation were considered, namely, the near-Gaussian approximation to the verticalvelocity and the absence of longitudinal advection. It was found that both of these assumptions were violated throughout the day, but the resulting CO2 flux error at 9 m was not strongly related to these approximations. In contrast to the forward LNF approach utilized by other studies, this investigation demonstrated that the inverse LNF approach is sensitive to near-field corrections

    Isospectral discrete and quantum graphs with the same flip counts and nodal counts

    Get PDF
    The existence of non-isomorphic graphs which share the same Laplace spectrum (to be referred to as isospectral graphs) leads naturally to the following question: What additional information is required in order to resolve isospectral graphs? It was suggested by Band, Shapira and Smilansky that this might be achieved by either counting the number of nodal domains or the number of times the eigenfunctions change sign (the so-called flip count). Recently examples of (discrete) isospectral graphs with the same flip count and nodal count have been constructed by K. Ammann by utilising Godsil-McKay switching. Here we provide a simple alternative mechanism that produces systematic examples of both discrete and quantum isospectral graphs with the same flip and nodal counts.Comment: 16 pages, 4 figure
    • ā€¦
    corecore